Equilibria

I. Balance each equation and write an equilibrium expression for each of the following reactions.

1.
$$SO_{2(g)} + O_{2(g)} \Leftrightarrow SO_{3(g)}$$

2.
$$CO(g) + O_{2(g)} \Leftrightarrow CO_{2(g)}$$

$$3 N_{2(g)} + H_{2(g)} \Leftrightarrow NH_{3(g)}$$

4.
$$H_{2(g)} + Cl_{2(g)} \Leftrightarrow HCl_{(g)}$$

5.
$$N_{2(g)} + O_{2(g)} \Leftrightarrow N_2O_{(g)}$$

6. NO
$$(g)$$
 + O₂ (g) \Leftrightarrow NO₂ (g)

7.
$$HC_2H_3O_{2(aq)} \Leftrightarrow H^+_{(aq)} + C_2H_3O_2^-_{(aq)}$$

8. HCN
$$(aq) \Leftrightarrow H^+(aq) + CN^-(aq)$$

9. AgCl
$$(s) \Leftrightarrow Ag^+_{(aq)} + Cl^-_{(aq)}$$

10.
$$PbI_{2(s)} \Leftrightarrow Pb^{2+}_{(aq)} + \Gamma_{(aq)}$$

11.
$$Bi_2S_{3(s)} \Leftrightarrow Bi^{3+}_{(aq)} + S^{2-}_{(aq)}$$

II. In each of the following, determine the unknown quantity from the information given. The number in parentheses refers to the corresponding reaction in Part I to which you should refer.

1. Find
$$K_{eq}$$
 if $[SO_2] = 1.0 \text{ M}$; $[O_2] = 1.0 \text{ M}$; $[SO_3] = 2.0 \text{ M}$ (1)

2. Find
$$K_{eq}$$
 if [CO] = 0.5 M; $[O_2]$ =0.5 M; $[CO_2]$ = 2.5 M (2)

3. Find
$$K_{eq}$$
 if $[N_2] = 0.25$ M; $[H_2] = 0.10$ M; $[NH_3] = 0.010$ M (3)

4. Find
$$K_{eq}$$
 if $[H_2] = 2.0 \times 10^{-3} M$; $[Cl_2] = 2.5 \times 10^{-2} M$; $[HCl] = 1.5 \times 10^{-3} M$ (4)

5. Find
$$[O_2]$$
 if $K_p = 45.0$ atm⁻¹; $[N_2] = 1.0$ atm; $[N_2O] = 1.0$ atm (5)

6. Find [NO] if
$$[O_2] = 0.10 \text{ M}$$
; $[NO_2] = 0.20 \text{ M}$; $K_{eq} = 10.0$ (6)

7. Find [N₂] if [H₂] =
$$1.0 \times 10^{-2} \text{ M}$$
; [NH₃] = $2.0 \times 10^{-3} \text{ M}$; $K_{eq} = 1.5 \times 10^{-4}$ (3)

8. Find [CO] if
$$[O_2] = 1.3 \times 10^{-3} \text{ M}$$
; $[CO_2] = 2.5 \times 10^{-4} \text{ M}$; $K_{eq} = 3.6 \times 10^{-3}$ (2)

9. Find
$$K_a$$
 if $[HC_2H_3O_2] = 0.10 \text{ M}$; $[H^+] = [C_2H_3O_2] = 0.0010 \text{ M}$ (7)

10. Find
$$K_a$$
 if [HCN] = 0.0010 M; $[H^+]$ = 0.010 M; $[CN^-]$ = 2.0 x 10⁻⁸ (8)

11. Find
$$[C_2H_3O_2^-]$$
 if $[HC_2H_3O_2] = 1.5 \times 10^{-2} \text{ M}$; $[H^+] = 2.0 \times 10^{-3} \text{ M}$; $K_a = 1.8 \times 10^{-5}$ (7)

12. Find
$$[H^+]$$
 if $[HCN] = 3.6 \times 10^{-3} \text{ M}$ and $[CN^-] = [H^+]$; $K_a = 5.8 \times 10^{-8}$ (8)

13. Find
$$K_{sp}$$
 if the solubility of silver chloride is $4.3 \times 10^{-6} \text{ g}/100 \text{ mL}$ (9)

14. Find
$$K_{sp}$$
 if the solubility of bismuth (III) sulfide is 2.9 x 10^{-5} g/100 mL (11)

15. Find
$$[Pb^{2+}]$$
 if K_{sp} for PbI_2 is 7.5 x 10^{-9} (10)

III. Solve each of the following problems involving equilibria.

- 1. Calculate the equilibrium constant for the following reaction; $2A + B \Leftrightarrow 3C + D$, where the concentrations are A = 3.0 M; B = 2.0 M; C = 2.0 M; and D = 4.0 M
- 2. The equilibrium constant for the reaction A + B qe 2C is 50. After mixing equimolar quantities of A and B, the equilibrium concentration of C is found to be 0.50 M. What are the concentrations of A and B at equilibrium?
- 3. Consider the reaction PCl_{5 (g)} qe PCl_{3 (g)} + Cl₂ (g). the equilibrium mixture in a 9.0 L container was found to include 0.25 moles of PCl₅, 0.36 moles of PCl₃, and 0.36 moles of Cl₂. From this data calculate the equilibrium constant for the reaction at the reaction temperature of 225° C.
- 4. Nitrogen is caused to react with hydrogen to form ammonia at 450° C in a 4.0 L vessel. At equilibrium, the partial pressures observed for each of the species in the reaction was as follows: ammonia 900 mm Hg, nitrogen 180 mm Hg and hydrogen 305 mm Hg. From this information calculate the equilibrium constant for the reaction at this temperature.
- 5. Consider the reaction $H_{2(g)} + I_{2(g)}$ qe 2 $HI_{(g)}$. The equilibrium constant for this reaction is 32. If at equilibrium the concentration of HI is 0.40 M and that of I_2 is 0.05 M, what is the concentration of hydrogen?

6. The equilibrium constant of the following reaction is 8. What is the concentration of oxygen at equilibrium?

$$4 \text{ Al } (s) + 3 \text{ O}_{2(g)} \Leftrightarrow 2 \text{ Al}_{2}\text{O}_{3(s)}$$

- 7. For the reaction $H_{2 (g)} + I_{2 (g)} = 2 HI_{(g)}$ what is the equilibrium constant if the following concentrations are observed at equilibrium? $[H_2] = 5.62 M$ $[I_2] = 0.130 M$ [HI] = 7.89 M
- 8. Given the equilibrium concentrations shown below, what is the dissociation constant for ammonia?

$$[NH_3] = 0.0015 M$$

$$[H_2] 0.032 M$$

$$[N_2] = 0.069 \text{ M}$$