Atomic Theory Problems - Electromagnetic Radiation

Useful Equations: 
$$c=f\lambda$$
  $E=hf$   $\frac{1}{\lambda}=R_H\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)$   $R_H=1.09678\times10^{-2}/nm$ 

$$\Delta E = -1312 \text{ kJ/mole} \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
 c=3.00x10<sup>8</sup> m/s h=6.6260755x10<sup>-34</sup> J/Hz

- 1. What is the energy in blue light with a wavelength of 410 nm? 4.85x10<sup>-19</sup> J
- 2. What is the energy in red light with a wavelength of 656 nm?  $3.03 \times 10^{-19}$  J
- 3. The energy of a photon of light is 3.85x10-19 J, what is the wavelength? 516 nm
- 4. The energy of a photon of light is  $8.35 \times 10^{-19}$  J, what is the wavelength? 238 nm
- 5. What is the wavelength of light when an electron moves from the 3rd energy level to the first energy level? What "color" is this light? 102.5 nm UV
- 6. What is the wavelength of light when an electron moves from the 6th energy level to the 2nd energy level? What "color" is this light? 410 nm violet
- 7. What is the energy in light generated by an electron going from the 5th energy level to the 3rd energy level?  $1.55 \times 10^{-19}$  J
- 8. An electron starts on the third energy level and absorbs a photon of 1094 nm, where does it end up? 6<sup>th</sup> energy level